On the Move: Velocity Activity

 Name:

 Group Mates:

Materials:

- Meter stick
- Masking tape
- Timer

Directions:

In small groups you will conduct an experiment to create a position vs. time graph.

- 1. With masking tape, make a start line on the floor. Make sure it is visible to everyone.
- 2. Measure two meters from the start line. Place another strip of masking tape.
- 3. Have total of six masking tapes representing each two meter mark. The total distance marked off should be 12 meters.
- 4. After setting up your experiment, it should look something like this:

5. Start walking from 0-6 meters. Then, increase your speed (run) immediately after 6 meters and maintain a faster constant speed (same running speed).

Distance (m)	Time (seconds)
0	0
2	
4	
6	
8	
10	
12	

Graph (fill in appropriate increments for the time axis):

Velocity Calculations and Questions:

- 1. Calculate velocity.
 - a. Determining the velocity between 0-2 meters.
 - 1. What is the change in distance from the start to the 2-meter mark?
 - 2. What is the change in time from the start to the 2-meter mark?
 - 3. Calculate velocity as the change in distance (calculated in step 1) over the change in time (calculated in step 2).
 - b. Repeat this process for each increment (2-4, 4-6, 6-8, etc.) and fill in the table.

Distance Interval	Change in Distance (m)	Change in Time (seconds)	Velocity (m/s)				
0m – 2m							
2m-4m							
4m – 6m							
6m – 8m							
8m – 10m							
10m – 12m							

2. Did the velocity change over the 12 meter distance? Why do you think it changed or stayed the same?

- 3. What do you think would happen to the velocity if you decreased your speed over the 12meters?
- 4. Draw a graph for velocity vs. time from the data you calculated in step 1.

The University of Iowa

Acceleration Calculations and Questions:

- 1. There is a change in speed between 6 meters to 8 meters. Whenever there is a change in speed or direction vs. time, it is called **acceleration**.
- 2. Calculate acceleration.
 - a. Determining the acceleration between 6-8 meters.
 - 1. What is the change in velocity from the 6 to the 8-meter mark that you calculated in the table in the previous section (velocity calculations and questions)?
 - 2. What is the change in time from the 6 to the 8-meter mark?
 - 3. Calculate acceleration as the change in velocity (calculated in step 1 above) divided by the change in time (calculated in step 2 above).

Velocity Interval	Change in Velocity (m/s)	Change in time (seconds)	Acceleration (m/s ²)

b. Repeat this process for each increment (2-4, 4-6, 6-8, etc.) and fill in the table.

3. What will happen to the acceleration if the speed increases more after 12m? Explain why.

4. Draw a graph for acceleration vs. time.

_	 					 	 		